Range Trees

IOI Training Camp 2 2006
 Keegan C-Smith

Overview

- Not called a range tree.
- Range trees can tell you how many of an item you in $O(\log n)$
- Insertions in avg case: O (log n)
- Insertions can be ranges or single number.
- All ranges must be Integer ranges.

How it works

- Complete binary tree.
- Root encompasses entire range.
- Each node will cover a range $[A, B]$.
- Left child will have range $[\mathrm{A},(\mathrm{A}+\mathrm{B}) / 2]$.
- Right child will have range ((A+B)/2,B].
- If $A==B$, a node has
 no children.

How it works cont.

-Because ranges have to be indexes, $(\mathrm{A}+\mathrm{B}) / 2$ must be floored or ceil. For these slides I am going to use floor.
-Ranges must be inclusive.

Inserting

- When passing through a node:
- If every num in range is in nodes range, increase node's count. Do not traverse children.
- If no num in range is in left child's range, do not traverse left child.
- If no num in range is in right child's range, do not traverse right child.

Inserting examples

Inserting 1->4

Inserting 2->3

Inserting 2->4

Inserting 4->4

Reading

- To find out how many of item C you have you traverse as if inserting range C->C.
- Each node you pass through, you increment a count.

Reading of 4

There are $1+2+1=4$ items of item 4

Implementation in an Array

- Can be implemented in an array if using indexing from 1.
- Left tree index = current index * 2
- Right tree index = current index * $2+1$
- Size of array: $\sum_{i=0}^{\text {ceil }\left(\log _{2}, n\right)} 2^{i}$

Array Indexes

